Assistant Documentation
Release 0.1.0

Jewel Mahanta

May 20, 2017

Contents

Contents 3
1.1 Installation e e e e e e e e e 3
1.2 APIReference e e e 4
Indices and tables 7

Assistant Documentation, Release 0.1.0

Assistant is a discord assistant bot. It is a self bot, which means only you can use its commands. Assistant runs on top
of the Assistant framework.You can extend it by writing your own modules/add-ons or download from a selection of
awesome community written plugins.

The default plugin comes with these commands, (modules/default .py):
* eval js: Evaluate Javascript commands
* evalpy: Evalualte Python commands

¢ sh: Run shell commands

Contents 1

Assistant Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Contents

Installation

It is recommended to run Assistant using docker. It saves you the hassle of manually installing dependencies.

Docker

1. Install docker
2. Install git

3. Clone the Assistant github repository:

git clone https://github.com/lap00zza/Assistant.git
cd Assistant

4. Create an environment variable named DOCKER__TOKEN and set it to you own token. To find your token, open
discord and press ctr1+shift+i. Then go to the Applications tab and find the Key named token. This is
your token.

5. Now build the image and run.

docker-compose build
docker—-compose up

Normal

1. Install git
2. Install Python 3.6+
3. Install Nodels 6.7.0+ (for evaljs)

4. Clone the Assistant github repository:

https://www.docker.com/community-edition#/download
https://git-scm.com/downloads
https://git-scm.com/downloads
https://www.python.org/downloads/
https://nodejs.org/en/download/

Assistant Documentation, Release 0.1.0

git clone https://github.com/lap00zza/Assistant.git
cd Assistant/bot

5. Install the dependencies

pip install -r requirements.txt

6. Create an environment variable named DOCKER_TOKEN and set it to you own token. To find your token, open
discord and press ctr1+shift+i. Then go to the Applications tab and find the Key named token. This is

your token.

7. Now run.

’py run.py

API Reference

The complete API reference for Assistant. If you want to make your own modules, you should definitely read this.

Assistant

class assistant .Assistant (**kwargs)

add_event_listener (callback, event=None)
Add a new event listener.

Parameters

* callback (coroutine) — The coroutine to call when this event is triggered. The
callback must be a coroutine.

* event ([Optional] str)— The name of the event for which the callback is being
registered. If a name is not given, callback.__name___ will be used.

Raises TypeError — The callback is not a coroutine.

add_module (module)
Add a new module to Assistant.

Parameters module — The module to add.

Notes

This function is called from the 1oad function of the module.

event_listener (event=None)
This function is a decorator. It is a convenience wrapper for add_event_listener ().

Parameters event ([Optional] str)- The name of the event to listen to. This can be a
custom event or a standard discord event .

4 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
http://discordpy.readthedocs.io/en/latest/api.html#event-reference

Assistant Documentation, Release 0.1.0

Examples

@my_assistant.event_listener()
async def on_message (message) :
print (message.content)

@my_assistant.event_listener (event="on_ready")
async def my_awesome_function() :
print ("Awesome! We are ready to roll.")

@my_ assistant.event_listener (event="my_custom_event")
async def my_awesome_function() :
print ("Awesome! We are ready to roll once again.")

load_module (name)
Load a module. Modules are collection of commands and custom event listeners. They are stateful. Sample
modules can be found in /bot /modules directory. All modules must have a load function.

Parameters name (st r)— The name of the module to load. See Notes for clarification.
Raises
e AttributeError — Module does not have a load function.

* TypeError — You are trying to access a module using relative path. See Notes for correct
name convention.

Notes

+-—-run.py (or any file with run)

\
+-—-subdirectory-———+---hello.py

\
+-——-hello_again.py

Modules should be placed in a sub-directory from where run () is used. For example, (using the above
diagram as reference) if the name of your module file is hello.py and it is placed inside subdirectory then
run.py will look something like this:

from assistant import Assistant

my_assistant = Assistant ()

Remember, no need to append .py
my_assistant.load_module ("subdirectory.hello")
my_assistant.run()

remove_event_listener (callback, event=None)
Remove an event listener.

Parameters
¢ callback (coroutine)— The coroutine to remove.

e event ([Optional] str)— The name of the event listener to remove. If a name is
not given, callback.__name__ will be used.

1.2

API Reference 5

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str

Assistant Documentation, Release 0.1.0

Common

class assistant .Common (**kwargs)

add_command (cmd)
Add a command to the commands list.

Parameters cmd (Command) — The command to add.

command (*args, **kwargs)
This is a decorator. It invokes command () and adds the command to the commands list using
add_command ()

Command
class assistant .Command (name, callback, **kwargs)
Represents a command.

name
str — The name of the command.

callback
coroutine — The coroutine to invoke when the command is used.

description
str — A short description of the command.

assistant .command (name=None, **kwargs)
This function is a decorator. It is used to generate a Command object.

Parameters name ([Optional] str)— The name of the command. If a name is not provided
then the functions name func.___name___ is used instead.

Example

you don't always have to specify a name.
Although specifying a name can be helpful.

@command ()
async def my_command (ctx) :
await ctx.send_message (message.channel, "Hello")

@command (name="ping")
async def _ping(ctx):
await ctx.send_message (message.channel, "pong")

Raises TypeError — The callback function is not a coroutine.

6 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

Assistant Documentation, Release 0.1.0

8 Chapter 2. Indices and tables

Index

A

add_command() (assistant. Common method), 6
add_event_listener() (assistant.Assistant method), 4
add_module() (assistant. Assistant method), 4
Assistant (class in assistant), 4

C

callback (assistant.Command attribute), 6
Command (class in assistant), 6
command() (assistant. Common method), 6
command() (in module assistant), 6
Common (class in assistant), 6

D

description (assistant.Command attribute), 6

E

event_listener() (assistant. Assistant method), 4

L

load_module() (assistant.Assistant method), 5

N

name (assistant. Command attribute), 6

R

remove_event_listener() (assistant.Assistant method), 5

	Contents
	Installation
	API Reference

	Indices and tables

